skip to main content
Mathematics of Signal Processing
12 units (3-0-9)  | third term
Prerequisites: ACM/IDS 104, CMS/ACM/EE 122, and ACM/EE/IDS 116; or instructor's permission.

This course covers classical and modern approaches to problems in signal processing. Problems may include denoising, deconvolution, spectral estimation, direction-of-arrival estimation, array processing, independent component analysis, system identification, filter design, and transform coding. Methods rely heavily on linear algebra, convex optimization, and stochastic modeling. In particular, the class will cover techniques based on least-squares and on sparse modeling. Throughout the course, a computational viewpoint will be emphasized. Not offered 2023-24.

Instructor: Hassibi